National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Ionization detector of secondary electrons for environmental scanning electron microscope
Dušek, Petr ; Zimáková, Jana (referee) ; Čudek, Pavel (advisor)
This thesis deals with problematics of a detection of secondary electrons by ionization detector for environmental scanning electron microscope. In this thesis is described the difference between scanning electron microscope and environmental scanning electron microscope. Further there is described emission and detection of the choosen signals that arise while primary electrons are interacting with a specimen in scanning electron microscope. A special emphasis is placed on a description, sorting and on the form of detection of secondary electrons. In thesis there is described principle of a function of ionization a scintilation detectors. Experimental part of thesis describes design of 3 different elctrode systems of a tabular ionization detector, which will be intended to be placed in environmental scanning electron microscope. Based on measuring with the detectors, with experimental design, there is chosen one with the highest quality of signal detection.
Concept and Development of Single-purpose Scanning Electron Microscope
Foret, Zdeněk ; Vašina, Radovan (referee) ; Starý,, Vladimír (referee) ; Svoboda, Milan (referee) ; Švejcar, Jiří (advisor)
Electron microscopy has become an essential component in many scientific fields, in which it contributes to new discoveries. The microscopy itself is continually being developed and the limits, which seemed to be insurmountable, have been overcome. The instruments have become user friendlier and their mobility enables flexible practical use in the field. The subject of this work is the design of a scanning electron microscope, the calculation of a magnetic curcuit of an immersion objective combined with standard lens, the theoretical calculation of a microscope resolution and the design solution of the mechanical parts of the microscope with a sample manipulator. The thesis includes a description of the electron microscopy development summarizing it briefly from the very beginning up to now. It also deals with electron sources, especially the Shottky cathode, which is to be the main object observed by the proposed device. The work also contains a description of the calculation of the microscope resolution as a function of the current density distribution. Another interesting issue included in the theoretical part is the signal detection, a description of several types of detectors and possible signal processing. The solution of the thesis includes a description of the concept of the scanning electron microscope with an explanation of the distribution of combined lens functions. The optical diagram shows the arrangement of the electron optics system and the distibution of pressure in the chamber of the microscope. The theoretical calculation is devoted to the magnetic curcuit design of the objective and to the resolution of the microscope for a given extent of working distances. Two modifications of the lens were designed – a standard simple objective and a combination of the standard objective with the immersion magnetic one. The results of both modifications are given for the parameters to be compared. The combined objective was designed with the possibility of use in two modes, as a standard and immersion lens. The deflection system is also divided into two modes, as a single deflection for the standard lens and as a two-dimension deflection for the immersion lens. Detectors for secondary electrons (SE) and detectors for back scattered electrons (BSE) will be used for the signal detection. The design of the microscope is another large part, which gives details on the most significant components of the microscope. The content of the technical solution is a three-dimensional computer model, created in Autodesk Inventor, which also includes a sample manipulator driven by piezoelectric actuators.
Ionization detector for ESEM
Pokluda, Tomáš ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
This thesis is focused on the environmental scanning electron microscopes including a description of the basic physical mechanisms. It describes the design and realization of the electrode ionization detector system suitable for the detection of signal electrons with a greater proportion of secondary electrons. It also deals with simulations of trajectories of electrons in the electrostatic field of the detector, and with verification of the functionality of the detector in the environment of water vapors in the specimen chamber of the electron microscope.
Ionization detector of secondary electrons for environmental scanning electron microscope
Dušek, Petr ; Zimáková, Jana (referee) ; Čudek, Pavel (advisor)
This thesis deals with problematics of a detection of secondary electrons by ionization detector for environmental scanning electron microscope. In this thesis is described the difference between scanning electron microscope and environmental scanning electron microscope. Further there is described emission and detection of the choosen signals that arise while primary electrons are interacting with a specimen in scanning electron microscope. A special emphasis is placed on a description, sorting and on the form of detection of secondary electrons. In thesis there is described principle of a function of ionization a scintilation detectors. Experimental part of thesis describes design of 3 different elctrode systems of a tabular ionization detector, which will be intended to be placed in environmental scanning electron microscope. Based on measuring with the detectors, with experimental design, there is chosen one with the highest quality of signal detection.
Concept and Development of Single-purpose Scanning Electron Microscope
Foret, Zdeněk ; Vašina, Radovan (referee) ; Starý,, Vladimír (referee) ; Svoboda, Milan (referee) ; Švejcar, Jiří (advisor)
Electron microscopy has become an essential component in many scientific fields, in which it contributes to new discoveries. The microscopy itself is continually being developed and the limits, which seemed to be insurmountable, have been overcome. The instruments have become user friendlier and their mobility enables flexible practical use in the field. The subject of this work is the design of a scanning electron microscope, the calculation of a magnetic curcuit of an immersion objective combined with standard lens, the theoretical calculation of a microscope resolution and the design solution of the mechanical parts of the microscope with a sample manipulator. The thesis includes a description of the electron microscopy development summarizing it briefly from the very beginning up to now. It also deals with electron sources, especially the Shottky cathode, which is to be the main object observed by the proposed device. The work also contains a description of the calculation of the microscope resolution as a function of the current density distribution. Another interesting issue included in the theoretical part is the signal detection, a description of several types of detectors and possible signal processing. The solution of the thesis includes a description of the concept of the scanning electron microscope with an explanation of the distribution of combined lens functions. The optical diagram shows the arrangement of the electron optics system and the distibution of pressure in the chamber of the microscope. The theoretical calculation is devoted to the magnetic curcuit design of the objective and to the resolution of the microscope for a given extent of working distances. Two modifications of the lens were designed – a standard simple objective and a combination of the standard objective with the immersion magnetic one. The results of both modifications are given for the parameters to be compared. The combined objective was designed with the possibility of use in two modes, as a standard and immersion lens. The deflection system is also divided into two modes, as a single deflection for the standard lens and as a two-dimension deflection for the immersion lens. Detectors for secondary electrons (SE) and detectors for back scattered electrons (BSE) will be used for the signal detection. The design of the microscope is another large part, which gives details on the most significant components of the microscope. The content of the technical solution is a three-dimensional computer model, created in Autodesk Inventor, which also includes a sample manipulator driven by piezoelectric actuators.
Ionization detector for ESEM
Pokluda, Tomáš ; Špinka, Jiří (referee) ; Jirák, Josef (advisor)
This thesis is focused on the environmental scanning electron microscopes including a description of the basic physical mechanisms. It describes the design and realization of the electrode ionization detector system suitable for the detection of signal electrons with a greater proportion of secondary electrons. It also deals with simulations of trajectories of electrons in the electrostatic field of the detector, and with verification of the functionality of the detector in the environment of water vapors in the specimen chamber of the electron microscope.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.